Kolmogorov’s inequalityLet X1,…,Xn be independent random variables in a probability space, such that E[Xk]=0 and Var[Xk]<∞ fork=1,…,n. Then, for each λ>0,P(max1≤k≤n|Sk|≥λ)≤1λ2Var[Sn]=1λ2∑k=1nVar[Xk],where Sk=X1+⋯+Xk.