topological group
\\PMlinkescapephrase
completely regular
Definitions
A topological group is a group endowed with a topology
such that the multiplication and inverse
operations
of are continuous
(http://planetmath.org/Continuous).That is, the map defined by is continuous,where the topology on is the product topology,and the map defined by is also continuous.
Many authors require the topology on to be Hausdorff,which is equivalent
to requiring that the trivial subgroup be a closed set
.
A topology on a group that makes into a topology groupis called a group topology for .
Examples
Any group becomes a topological group if it is given the discrete topology.
Any group becomes a topological group if it is given the indiscrete topology.
The real numbers with the standard topology form a topological group.More generally, an ordered group with its is a topological group.
Lie groups are topological groups with additional structure
.
Profinite groups are another important class of topological groups;they arise, for example, in infinite Galois theory.
Subgroups, quotients and products
Every subgroup (http://planetmath.org/Subgroup) of a topological groupeither has empty interior or is clopen.In particular, all proper subgroups
of a connected topological grouphave empty interior.The closure
of any subgroup is also a subgroup,and the closure of a normal subgroup
is normal(for proofs, see the entry“closure of sets closed under a finitary operation (http://planetmath.org/ClosureOfSetsClosedUnderAFinitaryOperation)”).A subgroup of a topological group is itself a topological group,with the subspace topology.
If is a topological group and is a normal subgroup of ,then the quotient group is also a topological group,with the quotient topology.This quotient is Hausdorff if and only if is a closed subset of .
If is a family of topological groups,then the unrestricted direct product is also a topological group, with the product topology.
Morphisms
Let and be topological groups, and let be a function.
The function is said to be a homomorphism of topological groupsif it is a group homomorphism and is also continuous.It is said to be an isomorphism of topological groupsif it is both a group isomorphism and a homeomorphism.
Note that it is possible for to be a continuous group isomorphism(that is, a bijective
homomorphism of topological groups)and yet not be an isomorphism of topological groups.This occurs, for example, if is with the discrete topology,and is with its usual topology,and is the identity map on .
Topological properties
While every group can be made into a topological group,the same cannot be said of every topological space.In this section we mention some of the propertiesthat the underlying topological space must have.
Every topological group is bihomogeneousand completely regular (http://planetmath.org/Tychonoff).Note that our earlier claim that a topological groupis Hausdorff if and only if its trivial subgroup is closedfollows from this:if the trivial subgroup is closed,then homogeneity ensures that all singletons are closed,and so the space is (http://planetmath.org/T1Space),and being completely regular is therefore Hausdorff.A topological group is not necessarily http://planetmath.org/node/1530normal, however,a counterexample being the unrestricted direct productof uncountably many copies of the discrete group .
Every topological group is obviously an H-space.Consequently, the fundamental group
of a topological group is abelian
.Note that because topological groups are homogeneous
,the fundamental group does not depend (up to isomorphism)on the choice of basepoint.
Every locally compact topological groupis http://planetmath.org/node/1530normal and strongly paracompact.
Every connected locally compact topological group is -compact.
Other notes
Every topological group possesses a natural uniformity,which induces the topology.See the entry about the uniformity of a topological group (http://planetmath.org/UniformStructureOfATopologicalGroup).
A locally compact topological grouppossesses a natural measure, called the Haar measure.