请输入您要查询的字词:

 

单词 LandsbergSchaarRelation
释义

Landsberg-Schaar relation


The Landsberg-Schaar relation states that for any positive integers pand q:

1pn=0p-1exp(2πin2qp)=eπi/42qn=02q-1exp(-πin2p2q)(1)

Although both sides of (1) are mere finite sums,no one has yet found a proof which uses no infiniteMathworldPlanetmathlimiting process. One way to prove it is to putτ=2iq/p+ϵ, where ϵ>0, inthis identityPlanetmathPlanetmath due to Jacobi:

n=-+e-πn2τ=1τn=-+e-πn2/τ(2)

and let ϵ0. The details can be found here (http://planetmath.org/ProofOfJacobisIdentityForVarthetaFunctions). The identity (2) is a basic one in the theory oftheta functionsDlmfMathworld. It is sometimes called the functional equation for the Riemann theta functionDlmfDlmfMathworldPlanetmath. See e.g. [2 VII.6.2].

If we just let q=1 in the Landsberg-Schaar identity, it reduces to a formulaMathworldPlanetmathPlanetmathfor the quadratic Gauss sum mod p; notice that p need not be prime.

References:

[1] H. Dym and H.P. McKean. Fourier Series and Integrals. Academic Press, 1972.

[2] J.-P. Serre. A Course in Arithmetic. Springer, 1970.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 8:41:37