请输入您要查询的字词:

 

单词 ExampleOfGroupAction
释义

example of group action


Let a,b,c be integers and let [a,b,c] denote the mapping

[a,b,c]:×,(x,y)ax2+bxy+cy2.

Let G be the group of 2×2 matrices such that detA=±1AG. The substitution

(xy)A(xy)

leads to

[a,b,c](a11x+a12y,a21x+a22y)=ax2+bxy+cy2,

where

a=aa112+ba11a21+ca212(1)
b=2aa11a12+2ca21a22+b(a11a22+a12a21)
c=aa122+ba12a22+ca222

So we define

[a,b,c]A:=[a,b,c]

to be the binary quadratic form with coefficients a,b,cof x2,xy,y2, respectively as in (1). Putting inA=1001 we have[a,b,c]A=[a,b,c] for any binary quadratic form [a,b,c].Now let B be another matrix in G. We must show that

[a,b,c](AB)=([a,b,c]A)B.

Set [a,b,c](AB):=[a′′,b′′,c′′]. So we have

a′′=a(a11b11+a12b21)2+c(a21b11+a22b21)2+b(a11b11+a12b21)(a21b11+a22b21)(2)
=ab112+cb212+(2aa11a12+2ca21a22+b(a11a22+a12a21))b11b21
c′′=a(a11b12+a12b22)2+c(a21b12+a22b22)2+b(a11b12+a12b22)(a21b12+a22b22)(3)
=ab122+cb222+(2aa11a12+2ca21a22+b(a11a22+a12a21))b12b22

as desired.For the coefficient b′′ we get

b′′=2a(a11b11+a12b21)(a11b12+a12b22)
+2c(a21b11+a22b21)(a21b12+a22b22)
+b((a11b11+a12b21)(a21b12+a22b22)+(a11b12+a12b22)(a21b11+a22b21))

and by evaluating the factors of b11b12,b21b22, andb11b22+b21b12, it can be checked that

b′′=2ab11b12+2cb21b22+(b11b22+b21b12)(2aa11a12+2ca21a22+b(a11a22+a12a21)).

This shows that

[a′′,b′′,c′′]=[a,b,c]B(4)

and therefore [a,b,c](AB)=([a,b,c]A)B. Thus,(1) defines an action of G on the set of (integer) binaryquadratic forms.Furthermore, the discriminantMathworldPlanetmathPlanetmathPlanetmath of each quadratic formMathworldPlanetmath in the orbit of [a,b,c] under G isb2-4ac.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:19:47