请输入您要查询的字词:

 

单词 LaplaceTransformOfCosineAndSine
释义

Laplace transform of cosine and sine


We start from the easily formula

eαt1s-α  (s>α),(1)

where the curved from the Laplace-transformed functionMathworldPlanetmath to the original function.  Replacing α by -α we can write the second formula

e-αt1s+α  (s>-α).(2)

Adding (1) and (2) and dividing by 2 we obtain (remembering the linearity of the Laplace transformDlmfMathworldPlanetmath)

eαt+e-αt212(1s-α+1s+α),

i.e.

{coshαt}=ss2-α2.(3)

Similarly, subtracting (1) and (2) and dividing by 2 give

{sinhαt}=as2-α2.(4)

The formulae (3) and (4) are valid for  s>|α|.

There are the hyperbolic identities

coshit=cost,1isinhit=sint

which enable the transition from hyperbolic to trigonometric functionsDlmfMathworldPlanetmath.  If we choose  α:=ia  in (3), we may calculate

cosat=coshiatss2-(ia)2=ss2+a2,

the formula (4) analogously gives

sinat=1isinhiat1iias2-(ia)2=as2+a2.

Accordingly, we have derived the Laplace transforms

{cosat}=ss2+a2,(5)
{sinat}=as2+a2,(6)

which are true for  s>0.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:01:06