请输入您要查询的字词:

 

单词 2omeganletaunle2Omegan
释义

2ω(n)τ(n)2Ω(n)


Throughout this entry, ω, τ, and Ω denote the number of distinct prime factors function, the divisor functionDlmfDlmfMathworldPlanetmath, and the number of (nondistinct) prime factorsMathworldPlanetmath functionMathworldPlanetmath (http://planetmath.org/NumberOfNondistinctPrimeFactorsFunction), respectively.

Theorem.

For any positive integer n, 2ω(n)τ(n)2Ω(n).

Proof.

Note that 2ω(n), τ(n), and 2Ω(n) are multiplicative. Also note that, for any positive integer n, the numbers 2ω(n), τ(n), and 2Ω(n) are positive integers. Therefore, it will suffice to prove the inequality for prime powers.

Let p be a prime and k be a positive integer. Thus:

2ω(pk)=2τ(pk)=k+12Ω(pk)=2k

Hence, 2ω(pk)τ(pk)2Ω(pk). It follows that 2ω(n)τ(n)2Ω(n).∎

This theorem has an obvious corollary.

Corollary.

For any squarefreeMathworldPlanetmath positive integer n, 2ω(n)=τ(n)=2Ω(n).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 7:16:20