请输入您要查询的字词:

 

单词 LusternikSchnirelmannCategory
释义

Lusternik-Schnirelmann category


Let X be a topological spaceMathworldPlanetmath. An important topological invariantPlanetmathPlanetmath of X called Lusternik-Schnirelmann category cat is defined as follows:

cat(X)=min{#(C):where C are the coverings of X by contractible open sets}.

If X is a manifoldMathworldPlanetmath, cat(X) coincides with the minimal number of critical points among all smooth scalars maps X.

This is equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath to saying that X has a covering {Us} such thatit is posible to factor homotopically each UsiX through Usa*bX i.e

iba.

This allows us to define another category, e.g.:

We can ask about the minimal number of open sets Us that cover X andare homotopically equivalent to S1, say,the inclusion UsiX and UsaS1bX are iba.

It is becoming standard to speak of the t-cat of X.This is related to the round complexity of the space.

References

  • 1 R.H. Fox, On the Lusternik-Schnirelmann category, Annals of Math. 42 (1941), 333-370.
  • 2 F. Takens, The minimal number of critical points of a function on compact manifolds and the Lusternik-Schnirelmann category, Invent. math. 6,(1968), 197-244.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:07:33