请输入您要查询的字词:

 

单词 mathbbLpVsmathbbLq
释义

𝕃p vs 𝕃q


Let (X,𝒜,μ) be a measure spaceMathworldPlanetmath and 1p,q.Generally there is no connection between𝕃p(μ) and 𝕃q(μ) as sets.However, for some special measures,there is an interesting relationship between them.A few examples:

  1. 1.

    If λn is the Lebesgue measureMathworldPlanetmath on n and pq,then 𝕃p(λn)𝕃q(λn)for all n+.Here is an example for n=1 and 1p<q<.Let

    f(x):={x-1p,x>10,x1

    and

    g(x):={x-1q,x(0,1)0,x(0,1).

    This gives fqq=pq-p, gpp=qq-pand fp=gq=.So f𝕃q𝕃p and g𝕃p𝕃q.For the -norm,χ𝕃𝕃q,where χ is the characteristic functionMathworldPlanetmathPlanetmathPlanetmathPlanetmath,and also f𝕃.

  2. 2.

    If p<q then lplq.This is trivial if q=.Now let x=(x0,x1,)lp and q<.Then

    xqq=n=0|xn|q=n=0|xn|p|xn|q-pn=0|xn|pxq-p=xq-pxpp<,

    so xlq.

  3. 3.

    If μ(X) is finite and p<q,then 𝕃q𝕃p.This is easy if q=,because |f|f almost everywhere,so fpp=|f|p𝑑μfp𝑑μ=fpμ(X)<.Now let q<,thus

    fpp=|f|p𝑑μ
    =|f|>1|f|p𝑑μ+|f|1|f|p𝑑μ
    |f|>1|f|q𝑑μ+|f|1𝑑μ
    fqq+μ(X)
    <.

Finally, we prove an interesting property for p-norms:if X is a finite measure space,then for any measurable functionMathworldPlanetmath f on Xthe equality limpfp=f holds.We have already seen that fpfμ(X)1p.Now for any ε(0,f)define Aε:={xX:|f(x)|f-ε},δε:=μ(Aε)>0and g:=(f-ε)χAε.Since |g||f|,we have gp=(f-ε)δε1pfpfμ(X)1p.Now we take lim inf on the left and lim sup on the right side:f-εlim infpfplim suppfpf.Taking ε0gives limpfp=f.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 1:05:40