请输入您要查询的字词:

 

单词 AlgebraWithoutOrder
释义

algebra without order


An algebraPlanetmathPlanetmath (http://planetmath.org/Algebra) A is said to be \\PMlinkescapephraseorder without order if it is commutativePlanetmathPlanetmathPlanetmath and
for each aA, there exists bA such that ab0.

The phrase algebra without order seems first in the book “Multipliers of Banach algebras” by Ronald Larsen. In noncommutative case, the concept is divied into two parts – without left/right order. However, in the noncommutative case, it is defined in terms of the injectivity of the left (right) regular representation given by xALxL(A).

Note that for an algebra A and an element xA, Lx:AA is the map defined by Lx(y)=xy. Then Lx is a linear operator on A. It is easy to see that A is without left order if and only if the map xALxL(A) is one-one; equivalently, the left idealMathworldPlanetmathPlanetmath {xA:xA}={0}. This ideal is is called the left annihilator of A.

Every commutative algebra with identityPlanetmathPlanetmathPlanetmathPlanetmath is without order.

Example: 2 with multiplication defined by (x1,x2)*(y1,y2)=(x1y1,0), ((x1,x2),(y1,y2)2) is not an algebra without order as multiplication of (0,1) with any other element gives (0,0).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/24 22:11:42