请输入您要查询的字词:

 

单词 MultidimensionalGaussianIntegral
释义

multidimensional Gaussian integral


Let 𝐱=[x1x2xn]T and dn𝐱i=1ndxi.

Theorem 1

Let K be a symmetricMathworldPlanetmathPlanetmath positive definitePlanetmathPlanetmath (http://planetmath.org/PositiveDefinite) matrix andf:RnR, wheref(x)=exp(-12xTK-1x).Then

e-12𝐱T𝐊-1𝐱dn𝐱=((2π)n|𝐊|)12(1)

where |K|=detK.

Proof. 𝐊-1 is real and symmetric (since (𝐊-1)T=(𝐊T)-1=𝐊-1). For convenience, let 𝐀=𝐊-1. We can decompose 𝐀 into 𝐀=𝐓𝚲𝐓-1, where 𝐓 is an orthonormal (𝐓T𝐓=𝐈) matrix of the eigenvectorsMathworldPlanetmathPlanetmathPlanetmath of 𝐀 and 𝚲 is a diagonal matrixMathworldPlanetmath of the eigenvaluesMathworldPlanetmathPlanetmathPlanetmathPlanetmath of 𝐀. Then

e-12𝐱T𝐀𝐱dn𝐱=e-12𝐱T𝐓𝚲𝐓-1𝐱dn𝐱.(2)

Because 𝐓 is orthonormal, we have 𝐓-1=𝐓T. Now define a new vector variable 𝐲𝐓T𝐱, and substitute:

e-12𝐱T𝐓𝚲𝐓-1𝐱dn𝐱=e-12𝐱T𝐓𝚲𝐓T𝐱dn𝐱(3)
=e-12𝐲T𝚲𝐲|𝐉|dn𝐲(4)

where |𝐉| is the determinantMathworldPlanetmath of the Jacobian matrix Jmn=xmyn. In this case, 𝐉=𝐓 and thus |𝐉|=1.

Since 𝚲 is diagonalMathworldPlanetmath, the integral may be separated into the product of n independentPlanetmathPlanetmath Gaussian distributions, each of which we can integrate separately using the well-known formula

e-12at2𝑑t=(2πa)12.(6)

Carrying out this program, we get

e-12𝐲T𝚲𝐲dn𝐲=k=1ne-12λkyk2𝑑yk(7)
=k=1n(2πλk)12(8)
=((2π)nk=1nλk)12(9)
=((2π)n|𝚲|)12.(10)

Now, we have |𝐀|=|𝐓𝚲𝐓-1|=|𝐓||𝚲||𝐓-1|=|𝚲|, so this becomes

e-12𝐱T𝐀𝐱dn𝐱=((2π)n|𝐀|)12.(12)

Substituting back in for 𝐊-1, we get

e-12𝐱T𝐊-1𝐱dn𝐱=((2π)n|𝐊-1|)12=((2π)n|𝐊|)12,(13)

as promised.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:07:53