请输入您要查询的字词:

 

单词 RationalIntegersInIdeals
释义

rational integers in ideals


Any non-zero ideal of an algebraic number fieldMathworldPlanetmath K, i.e. of the maximal orderPlanetmathPlanetmath 𝒪K of K, contains positive rational integers.

Proof.  Let  𝔞(0)  be any ideal of 𝒪K.  Take a nonzero element α of𝔞.  The norm (http://planetmath.org/NormInNumberField) of α is the product

N(α)=α(1)α(2)α(n)γ

where n is the degree of the number field and α(1),α(2),,α(n) is the set of the http://planetmath.org/node/12046K-conjugatesPlanetmathPlanetmath of  α=α(1).  The number

γ=N(α)α

belongs to the field K and it is an algebraic integerMathworldPlanetmath, since α(2),,α(n) are, as algebraic conjugates of α, also algebraic integers.  Thus  γ𝒪K.  Consequently, the non-zero integer

N(α)=αγ

belongs to the ideal 𝔞, and similarly its opposite number.  So, 𝔞 contains positive integers, in fact infinitely many.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:46:38