请输入您要查询的字词:

 

单词 MultinomialDistribution
释义

multinomial distribution


Let 𝐗=(X1,,Xn) be a random vector such that

  1. 1.

    Xi0 and Xi

  2. 2.

    X1++Xn=N, where N is a fixed integer

Then X has a multinomial distributionMathworldPlanetmath if there exists a parameter vector 𝝅=(π1,,πn) such that

  1. 1.

    πi0 and πi

  2. 2.

    π1++πn=1

  3. 3.

    X has a discrete probability distribution function f𝐗(𝒙) in the form:

    f𝐗(𝒙)=N!x1!xn!i=1nπixi

Remarks

  • E[𝐗]=N𝝅

  • Var[𝐗]=(vij), where

    vij={Nπi(1-πi)if i=j;-Nπiπjif ij.
  • When n=2, the multinomial distribution is the same as the binomial distribution

  • If X1,,Xn are mutually independent Poisson random variables with parameters λ1,,λnrespectively, then the conditionalMathworldPlanetmathPlanetmath joint distributionPlanetmathPlanetmath of X1,,Xn given that X1++Xn=N ismultinomial with parameters λi/λ, where λ=λi.

    Sketch of proof.Each Xi is distributed as:

    fXi(xi)=e-λiλixixi!

    The mutual independence of the Xi’s shows that the joint probability distribution of the Xi’s is given by

    f𝐗(𝒙)=i=1ne-λiλixixi!=e-λi=1nλixixi!,

    where 𝐗=(X1,,Xn), 𝒙=(x1,,xn) and λ=λ1++λn.Next, let X=X1++Xn. Then X is Poisson distributed with parameter λ (which can be shown by using inductionMathworldPlanetmath and the mutual independence of the Xi’s):

    fX(x)=e-λλxx!.

    The conditional probability distribution of X given that X=N is thus given by:

    f𝐗(𝒙X=N)=f𝐗(𝒙)fX(N)=(e-λi=1nλixixi!)/(e-λλNN!)=N!x1!xn!i=1n(λiλ)xi,

    where xi=N and that λi/λ=1.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:01:36