Nagell-Lutz theorem
The following theorem, proved independently by E. Lutz and T.Nagell, gives a very efficient method to compute the torsionsubgroup of an elliptic curve defined over .
Theorem 1 (Nagell-Lutz Theorem).
Let be an elliptic curve with Weierstrass equation:
Then for all non-zero torsion points we have:
- 1.
The coordinates of are in , i.e.
- 2.
If is of order greater than , then
- 3.
If is of order then
References
- 1 E. Lutz, Sur l’equation dansles corps p-adic, J. Reine Angew. Math. 177 (1937), 431-466.
- 2 T. Nagell, Solution de quelque problemesdans la theorie arithmetique des cubiques planes du premiergenre, Wid. Akad. Skrifter Oslo I, 1935, Nr. 1.
- 3 James Milne, Elliptic Curves, http://www.jmilne.org/math/CourseNotes/math679.htmlonline coursenotes.
- 4 Joseph H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag, New York, 1986.