请输入您要查询的字词:

 

单词 SzemerediTrotterTheorem
释义

Szemerédi-Trotter theorem


The number of incidences of a set of n points and a set of m lines in the real plane 2 is

I=O(n+m+(nm)23).

Proof. Let’s consider the points as vertices of a graph, and connect two vertices by an edge if they are adjacent on some line. Then the number of edges is e=I-m. If e<4n then we are done. If e4n then by crossing lemma

m2cr(G)164(I-m)3n2,

and the theorem follows.

Recently, Tóth[1] extended the theorem to the complex planeMathworldPlanetmath 2. The proof is difficult.

References

  • 1 Csaba D. Tóth. The Szemerédi-Trotter theorem in the complex plane. http://www.arxiv.org/abs/math.CO/0305283arXiv:CO/0305283,May 2003.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:46:05