请输入您要查询的字词:

 

单词 PlaceOfField
释义

place of field


Let F be a field and an element not belonging to F.  The mapping

φ:kF{},

where k is a field, is called a place of the field k, if it satisfies the following conditions.

  • The preimageMathworldPlanetmathφ-1(F)=𝔬  is a subring of k.

  • The restrictionPlanetmathPlanetmathφ|𝔬  is a ring homomorphismMathworldPlanetmath from 𝔬 to F.

  • If  φ(a)=,  then  φ(a-1)=0.

It is easy to see that the subring 𝔬 of the field k is a valuation domain; so any place of a field determines a unique valuation domain in the field.  Conversely, every valuation domain 𝔬 with field of fractionsMathworldPlanetmath k determines a place of k:

Theorem.

Let 𝔬 be a valuation domain with field of fractions k and 𝔭 the maximal idealMathworldPlanetmath of 𝔬, consisting of the non-units of 𝔬.  Then the mapping

φ:k𝔬/𝔭{}

defined by

φ(x):={x+𝔭whenx𝔬,whenxk𝔬,

is a place of the field k.

Proof.  Apparently,  φ-1(𝔬/𝔭)=𝔬  and the restriction  φ|𝔬  is the canonical homomorphism from the ring 𝔬 onto the residue-class ring 𝔬/𝔭.  Moreover, if  φ(x)=,  then x does not belong to the valuation domain 𝔬 and thus the inverse element x-1 must belong to it without being its unit.  Hence x-1 belongs to the ideal 𝔭 which is the kernel of the homomorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathφ|𝔬.  So we see that  φ(x-1)=0.

References

  • 1 Emil Artin: .  Lecture notes.  Mathematisches Institut, Göttingen (1959).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:35:00