请输入您要查询的字词:

 

单词 PowerassociativeAlgebra
释义

power-associative algebra


Let A be a non-associative algebra. A subalgebraMathworldPlanetmathPlanetmathPlanetmathPlanetmath B of A is said to be cyclic if it is generated by one element.

A non-associative algebra is power-associative if, [B,B,B]=0 for any cyclic subalgebra B of A, where [-,-,-] is the associatorMathworldPlanetmath.

If we inductively define the powers of an element aA by

  1. 1.

    (when A is unital with 10) a0:=1,

  2. 2.

    a1:=a, and

  3. 3.

    an:=a(an-1) for n>1,

then power-associativity of A means that [ai,aj,ak]=0 for any non-negative integers i,j and k, since the associator is trilinear (linear in each of the three coordinates). This implies that aman=am+n. In addition, (am)n=amn.

A theorem, due to A. Albert, states that any finite power-associative division algebraMathworldPlanetmath over the integers of characteristic not equal to 2, 3, or 5 is a field. This is a generalizationPlanetmathPlanetmath of the Wedderburn’s Theorem on finite division rings.

References

  • 1 R. D. Schafer, An Introduction on Nonassociative Algebras, Dover, New York (1995).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:26:30