请输入您要查询的字词:

 

单词 PrimeNumberTheorem
释义

prime number theorem


Define π(x) as the number of primes less than or equal to x. The prime number theoremMathworldPlanetmath asserts that

π(x)xlogx

as x, that is, π(x)/xlogx tends to 1 as x increases. Here logx is the natural logarithmMathworldPlanetmathPlanetmathPlanetmath.

There is a sharper statement that is also known as the prime numbertheorem:

π(x)=lix+R(x),

where li is the logarithmic integralDlmfDlmfMathworldPlanetmath defined as

lix=2xdtlogt=xlogx+1!x(logx)2++(k-1)!x(logx)k+O{x(logx)k+1},for any fixed k

and R(x) is the error term whose behavior is still not fullyknown. From the work of Korobov and Vinogradov on zeroes ofRiemann zeta-function it is known that

R(x)=O{xexp(-c(θ)(logx)θ)}

for every θ>35. The unproven Riemann hypothesisMathworldPlanetmathis equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath to the statement that R(x)=O(x1/2logx).

There exist a number of proofs of the prime number theorem. Theoriginal proofs by Hadamard [4] and de laVallée Poussin[7] called on analysisMathworldPlanetmath ofbehavior of the Riemann zeta functionDlmfDlmfMathworld ζ(s) near the line s=1to deduce the estimates for R(x). For a long time it was an openproblem to find an elementary proof of the prime number theorem(“elementary” meaning “not involving complex analysis”).Finally Erdős and Selberg[3, 6] found such a proof.Nowadays there are some very short proofs of the prime numbertheorem (for example, see [5]).

References

  • 1 Tom M. Apostol. Introduction to Analytic Number TheoryMathworldPlanetmath. Narosa Publishing House, second edition, 1990. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0335.10001Zbl0335.10001.
  • 2 Harold Davenport. Multiplicative Number Theory. Markham Pub. Co., 1967. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0159.06303Zbl0159.06303.
  • 3 Paul Erdős. On a new method in elementary number theory. Proc. Nat. Acad. Sci. U.S.A., 35:374–384, 1949. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0034.31403Zbl0034.31403.
  • 4 Jacques Hadamard. Sur la distribution des zéros de la fonction ζ(s) et sesconséquences arithmétiques. Bull. Soc. Math. France, 24:199–220. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=27.0154.01JFM 27.0154.01.
  • 5 Donald J. Newman. Simple analytic proof of the prime number theorem. Amer. Math. Monthly, 87:693–696, 1980. http://links.jstor.org/sici?sici=0002-9890%28198011%2987%3A9%3C693%3ASAPOTP%3E2.0.CO%3B2-UAvailable onlineat http://www.jstor.orgJSTOR.
  • 6 Atle Selberg. An elementary proof of the prime number theorem. Ann. Math. (2), 50:305–311, 1949. http://www.emis.de/cgi-bin/zmen/ZMATH/en/quick.html?type=html&an=0036.30604Zbl0036.30604.
  • 7 Charles de la Vallée Poussin. Recherces analytiques sur la théorie des nombres premiers. Ann. Soc. Sci. Bruxells, 1897.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:01:42