请输入您要查询的字词:

 

单词 ProductsOfCompactPavingsAreCompact
释义

products of compact pavings are compact


Suppose that (Ki,𝒦i) is a paved space for each i in index setMathworldPlanetmathPlanetmath I. The productPlanetmathPlanetmathPlanetmath (http://planetmath.org/GeneralizedCartesianProduct) iIKi is the set of all functionsMathworldPlanetmath x:IiKi such that xiKi for each i, and the product of subsets SiKi is

iISi={xiIKi:xiSi for each iI}.

Then, the product paving is defined by

iI𝒦i={iISi:Si𝒦i for each iI}.
Theorem 1.

Let (Ki,Ki) be compactPlanetmathPlanetmath paved spaces for iI. Then, iKi is a compact paving on iKi.

Note that this result is a version of TychonoffPlanetmathPlanetmath’s theorem applying to paved spaces and, together with the fact that all compact pavings are closed subsets of a compact space, is easily seen to be equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath to Tychonoff’s theorem.

Theorem 1 is simple to prove directly. Suppose that {Aj:jJ} is a subset of i𝒦i satisfying the finite intersection property. Writing Aj=iISij for Sij𝒦i gives

jJAj=iI(jJSij)(1)

for any JJ. By the finite intersection property, this is nonempty whenever J is finite, so jJSij. Consequently, {Sij:jJ}𝒦i satisfies the finite intersection property and, by compactness of 𝒦i, the intersectionDlmfMathworldPlanetmath jJSij is nonempty. So equation (1) shows that jJAj is nonempty.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:55:06