请输入您要查询的字词:

 

单词 ProofOfArithmeticgeometricharmonicMeansInequality
释义

proof of arithmetic-geometric-harmonic means inequality


For the Arithmetic Geometric Inequality, I claim it is enough to prove that ifi=1nxi=1 with xi0 then i=1nxin. The arithmetic geometric inequality for y1,,yn will follow by takingxi=yik=1nykn. The geometric harmonic inequalityMathworldPlanetmath follows from the arithmetic geometric by taking xi=1yi.

So, we show that if i=1nxi=1 with xi0 then i=1nxin by inductionMathworldPlanetmath on n.

Clear for n=1.

Induction Step: By reordering indices we may assume the xi are increasing, so xn1x1. Assuming the statement is true for n-1, we havex2++xn-1+x1xnn-1. Then,

i=1nxin-1+xn+x1-x1xn

by adding x1+xn to both sides and subtracting x1xn. And so,

i=1nxin+(xn-1)+(x1-x1xn)
=n+(xn-1)-x1(xn-1)
=n+(xn-1)(1-x1)
n

The last line follows since xn1x1.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 9:20:34