请输入您要查询的字词:

 

单词 ProofOfBanachSteinhausTheorem
释义

proof of Banach-Steinhaus theorem


Let

En={xX:T(x)n for all T}.

From the hypothesisMathworldPlanetmathPlanetmath, we have that

n=1En=X.

Also, each En is closed, since it can be written as

En=TT-1(B(0,n)),

where B(0,n) is the closed ball centered at 0 with radius n in Y,and each of the sets in the intersectionMathworldPlanetmath is closed due to the continuity of the operators.Now since X is a Banach spaceMathworldPlanetmath, Baire’s category theoremMathworldPlanetmathimplies that there exists n such that En hasnonempty interior. So there is x0En and r>0 suchthat B(x0,r)En. Thus if xr, we have

T(x)-T(x0)T(x0)+T(x)=T(x0+x)n

for each T, and so

T(x)n+T(x0)

so if x1, we have

T(x)=1rT(rx)1r(n+T(x0))=c,

and this means that

T=sup{Tx:x1}c

for all T.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:08:48