请输入您要查询的字词:

 

单词 ProofOfBarbalatsLemma
释义

proof of Barbalat’s lemma


We suppose that y(t)↛0 as t. There exists a sequence (tn) in + such that tn as n and |y(tn)|ε for all n. By the uniform continuity of y, there exists a δ>0 such that, for all n and all t,

|tn-t|δ|y(tn)-y(t)|ε2.

So, for all t[tn,tn+δ], and for all n we have

|y(t)|=|y(tn)-(y(tn)-y(t))||y(tn)|-|y(tn)-y(t)|
ε-ε2=ε2.

Therefore,

|0tn+δy(t)𝑑t-0tny(t)𝑑t|=|tntn+δy(t)𝑑t|=tntn+δ|y(t)|𝑑tεδ2>0

for each n. By the hypothesisMathworldPlanetmathPlanetmath, the improprer Riemann integral 0y(t)𝑑t exists, and thus the left hand side of the inequalityMathworldPlanetmath convergesPlanetmathPlanetmath to 0 as n, yielding a contradictionMathworldPlanetmathPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 1:20:19