请输入您要查询的字词:

 

单词 ProofOfCalculusTheoremUsedInTheLagrangeMethod
释义

proof of calculus theorem used in the Lagrange method


Let f(𝐱) and gi(𝐱),i=0,,mbe differentiableMathworldPlanetmathPlanetmath scalar functions; 𝐱Rn.

We will find local extremes of the function f(𝐱) wheref=0. This can be proved by contradictionMathworldPlanetmathPlanetmath:

f0
ϵ0>0,ϵ;0<ϵ<ϵ0:f(𝐱-ϵf)<f(𝐱)<f(𝐱+ϵ𝐟)

but then f(𝐱) is not a local extreme.

Now we put up some conditions, such that we should find the 𝐱SRn that gives a local extreme of f. Let S=i=1mSi, andlet Si be defined so that gi(𝐱)=0𝐱Si.

Any vector 𝐱Rn can have one componentPlanetmathPlanetmathPlanetmath perpendicularMathworldPlanetmathPlanetmath tothe subset Si (for visualization, think n=3 and letSi be a flat surface). gi will be perpendicular toSi, because:

ϵ0>0,ϵ;0<ϵ<ϵ0:gi(𝐱-ϵgi)<gi(𝐱)<gi(𝐱+ϵgi)

But gi(𝐱)=0, so any vector 𝐱+ϵgi must be outside Si, and also outside S.(todo: I have proved that there might exist a component perpendicular to each subset Si, but not that there exists only one; this should be done)

By the argumentMathworldPlanetmath above, f must be zero - but now we can ignoreall components of f perpendicular to S. (todo: this should be expressed more formally and proved)

So we will have a local extreme within Si if there exists aλi such that

f=λigi

We will have local extreme(s) within S where there exists a setλi,i=1,,msuch that

f=λigi
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:47:59