请输入您要查询的字词:

 

单词 ProofOfCauchyConditionForLimitOfFunction
释义

proof of Cauchy condition for limit of function


The forward direction is . Assume that limxx0f(x)=L. Then given ϵ there is a δ such that

|f(u)-L|<ϵ/2 when 0<|u-x0|<δ.

Now for 0<|u-x0|<δ and 0<|v-x0|<δ we have

|f(u)-L|<ϵ/2 and |f(v)-L|<ϵ/2

and so

|f(u)-f(v)|=|f(u)-L-(f(v)-L)||f(u)-L|+|f(v)-L|<ϵ/2+ϵ/2=ϵ.

We prove the reverse by contradictionMathworldPlanetmathPlanetmath.Assume that the condition holds.Now suppose that limxx0f(x) does not exist. This means that forany land any ϵ sufficiently small then for any δ>0 there isxl such that 0<|xl-x0|<δand|f(xl)-l|ϵ.For any such ϵ choose u such that 0<|u-x0|<δ andput l=f(v) then substituting in the condition with u=xl we get|f(xl)-l|<ϵ. A contradiction.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 2:53:24