请输入您要查询的字词:

 

单词 ProofOfChebyshevsInequality
释义

proof of Chebyshev’s inequality


Let x1,x2,,xn and y1,y2,,yn be real numbers suchthat x1x2xn. Write the product(x1+x2++xn)(y1+y2++yn) as

(x1y1+x2y2++xnyn)(1)
+(x1y2+x2y3++xn-1yn+xny1)
+(x1y3+x2y4++xn-2yn+xn-1y1+xny2)
+
+(x1yn+x2y1+x3y2++xnyn-1).
  • If y1y2yn, each of the n terms in parenthesesis less than or equal to x1y1+x2y2++xnyn, according tothe rearrangement inequality. From this, it follows that

    (x1+x2++xn)(y1+y2++yn)n(x1y1+x2y2++xnyn)

    or (dividing by n2)

    (x1+x2++xnn)(y1+y2++ynn)x1y1+x2y2++xnynn.
  • If y1y2yn, the same reasoning gives

    (x1+x2++xnn)(y1+y2++ynn)x1y1+x2y2++xnynn.

It is clear that equality holds if x1=x2==xn ory1=y2==yn. To see that this condition is also necessary,suppose that not all yi’s are equal, so that y1yn.Then the second term in parentheses of (1) can only beequal to x1y1+x2y2++xnyn if xn-1=xn, the thirdterm only if xn-2=xn-1, and so on, until the last term whichcan only be equal to x1y1+x2y2++xnyn if x1=x2. Thisimplies that x1=x2==xn. Therefore, Chebyshev’s inequalityMathworldPlanetmathis an equality if and only if x1=x2==xn ory1=y2==yn.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 12:11:52