请输入您要查询的字词:

 

单词 ProductOfInjectiveModulesIsInjective
释义

product of injective modules is injective


PropositionPlanetmathPlanetmath. Let R be a ring and {Qi}iI a family of injectivePlanetmathPlanetmath R-modules. Then the productPlanetmathPlanetmathPlanetmath

Q=iIQi

is injective.

Proof. Let B be an arbitrary R-module, AB a submoduleMathworldPlanetmath and f:AQ a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath. It is enough to show that f can be extended to B. For iI denote by πi:QQi the projection. Since Qi is injective for any i, then the homomorphism πif:AQi can be extended to fi:BQi. Then we have

f:BQ;
f(b)=(fi(b))iI.

It is easy to check, that if aA, then f(a)=f(a), so f is an extensionPlanetmathPlanetmathPlanetmath of f. Thus Q is injective.

Remark. Unfortunetly direct sumMathworldPlanetmathPlanetmathPlanetmath of injective modulesMathworldPlanetmath need not be injective. Indeed, there is a theorem which states that direct sums of injective modules are injective if and only if ring R is NoetherianPlanetmathPlanetmath. Note that the proof presented above cannot be used for direct sums, because f(b) need not be an element of the direct sum, more precisely, it is possible that fi(b)0 for infinetly many iI. Nevertheless products are always injective.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/6/17 3:55:32