请输入您要查询的字词:

 

单词 ProofOfEulerMaclaurinSummationFormula
释义

proof of Euler-Maclaurin summation formula


Let a and b be integers such that a<b, and letf:[a,b] be continuousMathworldPlanetmathPlanetmath. We will prove by inductionMathworldPlanetmath thatfor all integers k0, if f is a Ck+1 function,

a<nbf(n)=abf(t)dt+r=0k(-1)r+1Br+1(r+1)!(f(r)(b)-f(r)(a))+(-1)k(k+1)!abBk+1(t)f(k+1)(t)dt(1)

where Br is the rth Bernoulli numberMathworldPlanetmathPlanetmath and Br(t) is the rthBernoulli periodic function.

To prove the formulaMathworldPlanetmathPlanetmath for k=0, we first rewriten-1nf(t)dt, where n is an integer, usingintegration by parts:

n-1nf(t)dt=n-1nddt(t-n+12)f(t)dt
=(t-n+12)f(t)|n-1n-n-1n(t-n+12)f(t)dt
=12(f(n)+f(n-1))-n-1n(t-n+12)f(t)dt.

Because t-n+12=B1(t) on the interval (n-1,n), this isequal to

n-1nf(t)dt=12(f(n)+f(n-1))-n-1nB1(t)f(t)dt.

From this, we get

f(n)=n-1nf(t)dt+12(f(n)-f(n-1))+n-1nB1(t)f(t)dt.

Now we take the sum of this expression for n=a+1,a+2,,b, sothat the middle term on the right telescopes away for the most part:

n=a+1bf(n)=abf(t)dt+12(f(b)-f(a))+abB1(t)f(t)dt

which is the Euler-Maclaurin formula for k=0, sinceB1=-12.

Suppose that k>0 and the formula is correct for k-1, that is

a<nbf(n)=abf(t)dt+r=0k-1(-1)r+1Br+1(r+1)!(f(r)(b)-f(r)(a))+(-1)k-1k!abBk(t)f(k)(t)dt.(2)

We rewrite the last integral using integration by parts and the factsthat Bk is continuous for k2 and Bk+1(t)=(k+1)Bk(t)for k0:

abBk(t)f(k)(t)dt=abBk+1(t)k+1f(k)(t)dt
=1k+1Bk+1(t)f(k)(t)|ab-1k+1abBk+1(t)f(k+1)(t)dt.

Using the fact that Bk(n)=Bk for every integer n if k2, wesee that the last term in Eq. 2 is equal to

(-1)k+1Bk+1(k+1)!(f(k)(b)-f(k)(a))+(-1)k(k+1)!abBk+1(t)f(k+1)(t)dt.

Substituting this and absorbing the left term into the summationyields Eq. 1, as required.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 9:30:14