请输入您要查询的字词:

 

单词 SolvingTheBlackScholesPDEByFiniteDifferences
释义

solving the Black-Scholes PDE by finite differences


This entry presents some examples of solvingthe Black-Scholes partial differential equationin one space dimension:

rf=ft+rxfx+12σ2x22fx2,f=f(t,x),

over the rectangle 0tT, XLxXU,with various boundary conditionsMathworldPlanetmath on the top, bottom, and rightsides of the rectangle. The parameters r, σ>0are arbitrary constants.

(Add diagram of domain here…)

The partial differential equationMathworldPlanetmath can be solvednumerically using the basic methodsbased on approximating the partial derivativesMathworldPlanetmathwith finite differences.

0.1 Finite-difference formulae

We summarize the equations for the finite differences below.

Let n, m, k be some chosen positive integers,which determine the grid on which we are approximating the solutionof the PDE.

Set ui,j to be the approximation to f(T-iΔt,jΔx),for 0im and kjk+n+1.(For convenience, we have made time move “backwards”as we increase i, because the original PDEis really a backwards heat equation, and evolves backwards in time.)

Also set:

Δt=Tm,Δx=XU-XLn+1

Explicit method.

ui+1,j-ui,jΔt=-rui,j+rjΔxui,j+1-ui,j-12Δx
  +12σ2(jΔx)2ui,j-1-2ui,j+ui,j+1Δx2
ui+1,j=(12(σj)2Δt-12rjΔt)ui,j-1
+(1-(σj)2Δt-rΔt)ui,j
+(12(σj)2Δt+12rjΔt)ui,j+1.

Since the PDE to solve is parabolic and time-dependent,we can step through time to numerically approximate it.Given ui,*, we can recursively compute ui+1,*.

(Add stencil of numerical method here…)

Implicit method.

ui+1,j-ui,jΔt=-rui+1,j+rjΔxui+1,j+1-ui+1,j-12Δx
  +12σ2(jΔx)2ui+1,j-1-2ui+1,j+ui+1,j+1Δx2
ui,j=(-12(σj)2Δt+12rjΔt)ui+1,j-1
+(1+(σj)2Δt+rΔt)ui+1,j
+(-12(σj)2Δt-12rjΔt)ui+1,j+1.

Crank-Nicolson method.

(-14(σj)2Δt+14rjΔt)ui+1,j-1+(1+12(σj)2Δt-12rΔt)ui+1,j+(-14(σj)2Δt-14rjΔt)ui+1,j+1=(14(σj)2Δt-14rjΔt)ui,j-1+(1-12(σj)2Δt-12rΔt)ui,j+(14(σj)2Δt+14rjΔt)ui,j+1

0.2 Convergence of methods

(Briefly discuss convergence properties of these methods here…)

0.3 Example results

Figure 1: Basic stock call option price

Boundary conditions and parameters:

r=0.10,σ=0.40,T=0.5,K=50.00.
XL=0,XU=100.00.
m=100,n=200,Δt=0.005,Δx=0.4975.
f(T,x)=max(x-K, 0),XLxXU
f(t,0)=0,0tT,
f(t,XU)=x-Ke-r(T-t),0tT.

(Describe analytic solution here…)

Figure 2: Price of call option with up-and-out barrier
r=0.10,σ=0.40,T=0.5,K=50.00.
XL=0,XU=100.00.
m=100,n=200,Δt=0.005,Δx=0.4975.
f(T,x)=max(x-K, 0),XLxXU
f(t,0)=0,0tT,
f(t,XU)=0,0tT.
  • http://svn.gold-saucer.org/math/PlanetMath/SolvingTheBlackScholesPDEByFiniteDifferences/bss.pyPython program that implements the finite-difference methods for the above two problems, and plots the results

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/6/14 3:59:27