请输入您要查询的字词:

 

单词 ProofOfFactorTheoremUsingDivision
释义

proof of factor theorem using division


Lemma (cf. factor theorem).

Let R be a commutative ring with identityPlanetmathPlanetmath and let p(x)R[x] be a polynomialMathworldPlanetmathPlanetmathPlanetmath with coefficients in R. The element aR is a root of p(x) if and only if (x-a) divides p(x).

Proof.

Let p(x) be a polynomial in R[x] and let a be an element of R.

  1. 1.

    First we assume that (x-a) divides p(x). Therefore, there is a polynomial q(x)R[x] such that p(x)=(x-a)q(x). Hence, p(a)=(a-a)q(a)=0 and a is a root of p(x).

  2. 2.

    Assume that a is a root of p(x), i.e. p(a)=0. Since x-a is a monic polynomialMathworldPlanetmath, we can perform the polynomial long division (http://planetmath.org/LongDivision) of p(x) by (x-a). Thus, there exist polynomials q(x) and r(x) such that:

    p(x)=(x-a)q(x)+r(x)

    and the degree of r(x) is less than the degree of x-a (so r(x) is just a constant). Moreover, 0=p(a)=0+r(a)=r(a)=r(x). Therefore p(x)=(x-a)q(x) and (x-a) divides p(x).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:44:48