proof of Gauss’ mean value theoremWe can parameterize the circle by letting z=z0+reiϕ.Then dz=ireiϕdϕ. Using the Cauchy integral formula we can express f(z0) in the following way:f(z0)=12πi∮Cf(z)z-z0𝑑z=12πi∫02πf(z0+reiϕ)reiϕireiϕ𝑑ϕ=12π∫02πf(z0+reiϕ)𝑑ϕ.