请输入您要查询的字词:

 

单词 ProofOfHadwigerFinslerInequality
释义

proof of Hadwiger-Finsler inequality


From the cosines law we get:

a2=b2+c2-2bccosα,

α being the angle between b and c. This can be transformed into:

a2=(b-c)2+2bc(1-cosα).

Since A=12bcsinα we have:

a2=(b-c)2+4A1-cosαsinα.

Now remember that

1-cosα=2sin2α2

and

sinα=2sinα2cosα2.

Using this we get:

a2=(b-c)2+4Atanα2.

Doing this for all sides of the triangle and adding up we get:

a2+b2+c2=(a-b)2+(b-c)2+(c-a)2+4A(tanα2+tanβ2+tanγ2).

β and γ being the other angles of the triangle. Now since the halves of the triangle’s angles are less than π2 the function tan is convex we have:

tanα2+tanβ2+tanγ23tanα+β+γ6=3tanπ6=3.

Using this we get:

a2+b2+c2(a-b)2+(b-c)2+(c-a)2+4A3.

This is the Hadwiger-Finsler inequality.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:08:07