proof of Heron’s formulaLet α be the angle between the sides b and c, then we get from the cosines law:cosα=b2+c2-a22bc.Using the equationsinα=1-cos2αwe get:sinα=-a4-b4-c4+2b2c2+2a2b2+2a2c22bc.Now we know:Δ=12bcsinα.So we get:Δ=14-a4-b4-c4+2b2c2+2a2b2+2a2c2=14(a+b+c)(b+c-a)(a+c-b)(a+b-c)=s(s-a)(s-b)(s-c).This is Heron’s formula. □