请输入您要查询的字词:

 

单词 ProofOfHolderInequality
释义

proof of Hölder inequality


First we prove the more general form (in measure spacesMathworldPlanetmath).

Let (X,μ) be a measure space and let fLp(X), gLq(X) where p,q[1,+] and 1p+1q=1.

The case p=1 and q= is obvious since

|f(x)g(x)|gL|f(x)|.

Also if f=0 or g=0 the result is obvious.Otherwise notice that (applying http://planetmath.org/node/YoungInequalityYoung inequalityMathworldPlanetmathPlanetmath) we have

fg1fpgq=X|f|fp|g|gq𝑑μ1pX(|f|fp)p𝑑μ+1qX(|g|gq)q𝑑μ=1p+1q=1

hence the desired inequalityMathworldPlanetmath holds

X|fg|=fg1fpgq=(X|f|p)1p(X|g|q)1q.

If x and y are vectors in n or vectors in p and q-spaces we can specialize the previous result by choosing μ to be the counting measure on .

In this case the proof can also be rewritten, without using measure theory,as follows.If we define

xp=(k|xk|p)1p

we have

|kxkyk|xpyqk|xk||yk|xpyq=k|xk|xp|yk|yq1pk|xk|pxpp+1qk|yk|qyqq=1p+1q=1.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 7:43:54