请输入您要查询的字词:

 

单词 FirstIsomorphismTheorem1
释义

first isomorphism theorem


Let Σ be a fixed signaturePlanetmathPlanetmathPlanetmath, and 𝔄 and 𝔅 structuresMathworldPlanetmath for Σ. If f:𝔄𝔅 is a homomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath, then there is a unique bimorphismPlanetmathPlanetmath ϕ:𝔄/ker(f)im(f) such that for all a𝔄, ϕ([[a]])=f(a). Furthermore, if f has the additional property that for each n and each n-ary relation symbol R of Σ,

R𝔅(f(a1),,f(an))ai[f(ai)=f(ai)R𝔄(a1,,an)],

then ϕ is an isomorphismMathworldPlanetmathPlanetmath.

Proof.

Since the homomorphic image of a Σ-structure is also a Σ-structure, we may assume that im(f)=𝔅.

Let =ker(f). Define a bimorphism ϕ:𝔄/𝔅:[[a]]f(a). To verify that ϕ is well defined, let aa. Then ϕ([[a]])=f(a)=f(a)=ϕ([[a]]). To show that ϕ is injectivePlanetmathPlanetmath, suppose ϕ([[a]])=ϕ([[a]]). Then f(a)=f(a), so aa. Hence [[a]]=[[a]]. To show that ϕ is a homomorphism, observe that for any constant symbol c of Σ we have ϕ([[c𝔄]])=f(c𝔄)=c𝔅. For each n and each n-ary function symbol F of Σ,

ϕ(F𝔄/([[a1]],,[[an]]))=ϕ([[F𝔄(a1,,an)]])
=f(F𝔄(a1,,an))
=F𝔅(f(a1),,f(an))
=F𝔅(ϕ([[a1]],,ϕ([[an]])).

For each n and each n-ary relation symbol R of Σ,

R𝔄/([[a1]],,[[an]])R𝔄(a1,,an)
R𝔅(f(a1),,f(an))
R𝔅(ϕ([[a1]],,ϕ([[an]])).

Thus ϕ is a bimorphism.

Now suppose f has the additional property mentioned in the statement of the theorem. Then

R𝔅(ϕ([[a1]]),,ϕ([[an]]))R𝔅(f(a1),,f(an))
ai[aiaiR𝔄(a1,,an)]
R𝔄/([[a1]],,[[an]]).

Thus ϕ is an isomorphism.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 14:37:43