请输入您要查询的字词:

 

单词 ProofOfLucassTheorem
释义

proof of Lucas’s theorem


Let nm. Let a0,b0 be the least non-negative residuesof n,m(modp), respectively. (Additionally, we set r=n-m, and r0 is theleast non-negative residue of r modulo p.) Then the statement follows from

(nm)(a0b0)(npmp)(modp).

We define the ’carry indicators’ ci for all i0 as

ci=(1ifbi+rip0otherwise,

and additionally c-1=0.

The special case s=1 of Anton’s congruenceMathworldPlanetmath is:

(n!)p(-1)npa0!(modp),(1)

where a0 as defined above, and (n!)p is the product of numbers nnot divisible by p.So we have

n!np!pnp=(n!)p(-1)npa0!(modp)

When dividing by the left-hand terms of the congruences for m and r, we seethat the power of p is

np-mp-rp=c0

So we get the congruence

(nm)(npmp)pc0(-1)c0(a0b0),

or equivalently

(-1p)c0(nm)(a0b0)(npmp)(modp).(2)

Now we consider c0=1. Since

a0=b0+r0-pc0=p,

b0+r0<b0c0=1b0-(p-r0)=a0<b0(a0b0)=0. So both congruences–the one in thestatement and (2)– produce the same results.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 11:26:18