请输入您要查询的字词:

 

单词 ProofOfPythagoreanTriples1
释义

proof of Pythagorean triples


Suppose that a2+b2=1 where a,b. a2+b2=N(i)/(a+bi) (here N is the norm), so a2+b2=1 if and only if N(i)/(a+bi)=1. (i) is cyclic over with Galois group isomorphicPlanetmathPlanetmathPlanetmath to /2, so by Hilbert’s Theorem 90, there is some element s+ti(i) such that

a+bi=s+tiσ(s+ti)=s+tis-ti=s2-t2+2stis2+t2

so that

a=s2-t2s2+t2,b=2sts2+t2

Now, given any integer right triangleMathworldPlanetmath p,q,r with p2+q2=r2, we have

(pr)2+(qr)2=1

where p/r,q/r, so for some s,t,

pr=s2-t2s2+t2,qr=2sts2+t2

Clearing fractions on the right hand side of these equations by multiplying numerator and denominator by the square of the least common multipleMathworldPlanetmathPlanetmath of the denominators of s,t, we get

pr=m2-n2m2+n2,qr=2mnm2+n2

for m,n. Thus for some d,

p=d(m2-n2),q=2mnd,r=d(m2+n2)
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:14:44