请输入您要查询的字词:

 

单词 ProofOfRiemannRochTheorem
释义

proof of Riemann-Roch theorem


For a divisorPlanetmathPlanetmath D, let 𝔏(D) be the associated line bundleMathworldPlanetmath. By Serre duality, H0(𝔏(K-D))H1(𝔏(D)), so (D)-(K-D)=χ(D), the Euler characteristicMathworldPlanetmath of 𝔏(D). Now, let p be a point of C, and consider the divisors D and D+p. There is a natural injection 𝔏(D)𝔏(D+p). This is an isomorphismMathworldPlanetmathPlanetmathPlanetmath anywhere away from p, so the quotient is a skyscraper sheaf supported at p. Since skyscraper sheaves are flasque, they have trivial higher cohomology, and so χ()=1. Since Euler characteristics add along exact sequencesPlanetmathPlanetmathPlanetmath (because of the long exact sequence in cohomology) χ(D+p)=χ(D)+1. Since deg(D+p)=deg(D)+1, we see that if Riemann-Roch holds for D, it holds for D+p, and vice-versa. Now, we need only confirm that the theorem holds for a single line bundle. 𝒪X is a line bundle of degree 0. (0)=1 and (K)=g. Thus, Riemann-Roch holds here, and thus for all line bundles.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:48:32