proof of Steiner’s theoremUsing α,β,γ,δ to denote angles as in the diagramat left, the sines law yieldsABsin(γ)=ACsin(β)(1)NBsin(α+δ)=NAsin(β)(2)MCsin(α+δ)=MAsin(γ)(3)MBsin(α)=MAsin(β)(4)NCsin(α)=NAsin(γ)(5)Dividing (2) and (3), and (4) by (5):MANANBMC=sin(γ)sin(β)=NAMAMBNCand thereforeNB⋅MBMC⋅NC=sin2(γ)sin2(β)=AB2AC2by (1).