请输入您要查询的字词:

 

单词 ProofOfTaylorsFormulaForMatrixFunctions
释义

proof of Taylor’s formula for matrix functions


Theorem.

Let p be a polynomialPlanetmathPlanetmath and suppose A and Bare squared matrices of the same size, then p(A+B)=k=0n1k!p(k)(A)Bkwhere n=deg(p).

Proof.

Since p is a polynomial, we can apply the Taylor expansionMathworldPlanetmath:

p(x)=k=0n1k!p(k)(x0)(x-x0)k

where n=deg(p). Now let x=𝐀+𝐁 andx0=𝐀.

The Taylor expansion can be checked as follows: letp(x)=k=0nakxk for coefficients ak(note that this coefficients can be taken from the space of squarematrices defined over a field). We define the formal derivative ofthis polynomial as p(1)(x)=dpdx=k=1nakkxk-1 and we definep(k)=dp(k-1)dx.

Thenp(k)(x)=i=knaii!(i-k)!xi-kand we have1k!p(k)(x0)=i=knaii!(i-k)!k!(x0)i-k.Now consider

k=0n1k!p(k)(x0)(x-x0)k=k=0n(i=knaii!(i-k)!k!(x0)i-k(x-x0)k)
=i=0nai(x0)i+i=1naii(x0)i-1(x-x0)++i=jnaii!(i-j)!j!(x0)i-j(x-x0)j++an(x-x0)n
=a0+a1(x)++ai(j=0ii!(i-j)!j!(x0)i-j(x-x0)j)++an(j=0nn!(n-j)!j!(x0)n-j(x-x0)j)
=k=0nakxi=p(x)

sincej=0ii!(i-j)!j!(x0)i-j(x-x0)j=(x)i.∎

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 16:30:19