请输入您要查询的字词:

 

单词 ProofOfTychonoffsTheorem
释义

proof of Tychonoff’s theorem


This is a proof in of nets. Recall the following facts:

1 - A net (xα)α𝒜 in iIXi convergesPlanetmathPlanetmath toxiIXi if and only if each coordinate (xαi)α𝒜 converges to xiXi

2 - A topological spaceMathworldPlanetmath X is compactPlanetmathPlanetmath if and only if every net in X has a convergent subnet.

3 - Every net has a universalPlanetmathPlanetmath subnet.

4 - A universal net (http://planetmath.org/Ultranet) (xα)α𝒜 in a compact space X is convergent. (see this entry (http://planetmath.org/UniversalNetsInCompactSpacesAreConvergent))

We now prove TychonoffPlanetmathPlanetmath’s theorem.

Proof (Tychonoff’s theorem) : Let (xα)α𝒜 be a net in iIXi.

Using Lemma 3 we can find a subnet (yβ)β of (xα)α𝒜.

It is easily seen that each coordinate net (yβi)β is a net in Xi.

Using Lemma 4 we see that each coordinate net converges, because Xi is compact.

Using Lemma 1 we see that the whole net (yβ)β converges in iIXi.

We conclude that every net in iIXi has a convergent subnet, so, by Lemma 2, iIXi must be compact.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 19:16:05