请输入您要查询的字词:

 

单词 ProofThatAFiniteAbelianGroupHasElementWithlvertGrvertexpG
释义

proof that a finite abelian group has element with \\delimiter69640972g\\delimiter86418188=exp(G)


Theorem 1

If G is a finite abelian group, then G has an element of order exp(G).

Proof. Write exp(G)=piki. Since exp(G) is the least common multiple of the orders of each group element, it follows that for each i, there is an element whose order is a multiple of piki, say |ci|=aipiki. Let di=ciai. Then |di|=piki. The di thus have pairwise relatively prime orders, and thus

|di|=|di|=exp(G)

so that di is the desired element.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 17:10:41