请输入您要查询的字词:

 

单词 ProofThatEulersConstantExists
释义

proof that Euler’s constant exists


Theorem 1

The limit

γ=limn(k=1n1k-lnn)

exists.

Proof. Let

Cn=11+12++1n-lnn

and

Dn=Cn-1n

Then

Cn+1-Cn=1n+1-ln(1+1n)

and

Dn+1-Dn=1n-ln(1+1n)

Now, by considering the Taylor seriesMathworldPlanetmath for ln(1+x), we see that

1n+1<ln(1+1n)<1n

and so

Cn+1-Cn<0<Dn+1-Dn

Thus, the Cn decrease monotonically, while the Dn increase monotonically, since the differences are negative (positive for Dn). Further, Dn<Cn and thus D1=0 is a lower boundMathworldPlanetmath for Cn. Thus the Cn are monotonically decreasing and bounded below, so they must converge.

References

  • 1 E. Artin, The Gamma FunctionDlmfDlmfMathworldPlanetmath, Holt, Rinehart, Winston 1964.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:55:05