请输入您要查询的字词:

 

单词 ProofToCauchyRiemannEquationspolarCoordinates
释义

proof to Cauchy-Riemann equations (polar coordinates)


If f(z) is differentialble at z0 then the following limit

f(z0)=limξ0f(z0+ξ)-f(z0)ξ

will remain the same approaching from any direction. First we fix θ as θ0 then we take the limit along the ray where the argument is equal to θ0. Then

f(z0)=limh0f(r0eiθ0+heiθ0)-f(r0eiθ0)heiθ0
=limh0f((r0+h)eiθ0)-f(r0eiθ0)heiθ0
=limh0u(r0+h,θ0)+iv(r0+h,θ0)-u(r0,θ0)-iv(r0,θ0)heiθ0
=1eiθ0[limh0u(r0+h,θ0)-u(r0,θ0)h+ilimh0v(r0+h,θ0)-v(r0,θ0)h]
=1eiθ0[ur(r0,θ0)+ivr(r0,θ0)]

Similarly, if we take the limit along the circle with fixed r equals r0. Then

f(z0)=limh0f(r0eiθ0+r0ei(θ0+h))-f(r0eiθ0)r0eiθ0(eih-1)
=limh0f(r0ei(θ0+h))-f(r0eiθ0)heiθ0
=limh0u(r0,θ0+h)+iv(r0,θ0+h)-u(r0,θ0)-iv(r0,θ0)heiθ0
=1r0eiθ0[limh0u(r0+h,θ0)-u(r0,θ0)hheih-1+ilimh0v(r0+h,θ0)-v(r0,θ0)hheih-1]
=1r0eiθ0[limh0u(r0+h,θ0)-u(r0,θ0)hlimh0heih-1+ilimh0v(r0+h,θ0)-v(r0,θ0)hlimh0heih-1]
=1r0eiθ0[uθ(r0,θ0)1i+vθ(r0,θ0)]
=1r0eiθ0[vθ(r0,θ0)-iuθ(r0,θ0)]

Note: We use l’Hôpital’s rule to obtain the following result used above limh0heih-1=1i.

Now, since the limit is the same along the circle and the ray then they are equal:

1eiθ0[ur(r0,θ0)+ivr(r0,θ0)]=1r0eiθ0[vθ(r0,θ0)-iuθ(r0,θ0)]
[ur(r0,θ0)+ivr(r0,θ0)]=1r0[vθ(r0,θ0)-iuθ(r0,θ0)]

which implies that

ur=1rvθ
vr=-1ruθ

QED

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:43:31