请输入您要查询的字词:

 

单词 PropertiesOfTheLebesgueIntegralOfLebesgueIntegrableFunctions
释义

properties of the Lebesgue integral of Lebesgue integrable functions


Theorem.

Let (X,B,μ) be a measure spaceMathworldPlanetmath, f:X[-,] and g:X[-,] be Lebesgue integrableMathworldPlanetmath functions, and A,BB. Then the following properties hold:

  1. 1.

    |Af𝑑μ|A|f|𝑑μ

  2. 2.

    If fg, then Af𝑑μAg𝑑μ.

  3. 3.

    Af𝑑μ=XχAf𝑑μ, where χA denotes the characteristic functionMathworldPlanetmathPlanetmathPlanetmathPlanetmath of A

  4. 4.

    If c, then Acf𝑑μ=cAf𝑑μ.

  5. 5.

    If μ(A)=0, then Af𝑑μ=0.

  6. 6.

    A(f+g)𝑑μ=Af𝑑μ+Ag𝑑μ.

  7. 7.

    If AB=, then ABf𝑑μ=Af𝑑μ+Bf𝑑μ.

  8. 8.

    If f=g almost everywhere with respect to μ, then Af𝑑μ=Ag𝑑μ.

Proof.
  1. 1.
  2. 2.

    Since fg, the following must hold:

    • f+=max{0,f}max{0,g}=g+;

    • -f-g;

    • f-=max{0,-f}max{0,-g}=g-.

    Thus, by the properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 2), Af+𝑑μAg+𝑑μ and Af-𝑑μAg-𝑑μ. Therefore, -Af-𝑑μ-Ag-𝑑μ. Hence, Af+𝑑μ-Af-𝑑μAg+𝑑μ-Af-𝑑μAg+𝑑μ-Ag-𝑑μ. It follows that Af𝑑μAg𝑑μ.

  3. 3.
  4. 4.

    If c0, then

    If c<0, then

  5. 5.

    Note that Af+𝑑μ=0 and Af-𝑑μ=0 by the properties of the Lebesgue integral of nonnegative measurable functions (http://planetmath.org/PropertiesOfTheLebesgueIntegralOfNonnegativeMeasurableFunctions) (property 6). It follows that Af𝑑μ=0.

  6. 6.

    Let {sn} be a nondecreasing sequenceMathworldPlanetmath of nonnegative simple functionsMathworldPlanetmath converging pointwise to f++g+ and {tn} be a nondecreasing sequence of nonnegative simple functions converging pointwise to f-+g-. Note that, for every n, Asn𝑑μ-Atn𝑑μ=A(sn-tn)𝑑μ.

    Since f and g are integrable and |f+g||f|+|g|, f+g is integrable. Thus,

  7. 7.
  8. 8.

    Let E={xA:f(x)=g(x)}. Since f and g are measurable functions and A𝔅, it must be the case that E𝔅. Thus, A-E𝔅. By hypothesisMathworldPlanetmath, μ(AE)=0. Note that E(AE)= and E(AE)=A. Thus, Af𝑑μ=Ef𝑑μ+AEf𝑑μ=Ef𝑑μ+0=Eg𝑑μ+0=Eg𝑑μ+AEg𝑑μ=Ag𝑑μ.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 18:55:03