yet another proof of parallelogram lawDefine g(ϵ)=⟨x+ϵy,x+ϵy⟩, where ϵ is real.Then g(ϵ)=⟨x,x⟩+ϵ(⟨y,x⟩+⟨x,y⟩)+ϵ2⟨y,y⟩.Hence,∥x+y∥2+∥x-y∥2=g(1)+g(-1)=2⟨x,x⟩+2⟨y,y⟩=2∥x∥2+2∥y∥2.