请输入您要查询的字词:

 

单词 RadicalOfAnIdeal
释义

radical of an ideal


Let R be a commutative ring. For any ideal I of R, the radicalPlanetmathPlanetmath of I, written I or Rad(I), is the set

{aRanI for some integer n>0}

The radical of an ideal I is always an ideal of R.

If I=I, then I is called a radical ideal.

Every prime idealMathworldPlanetmathPlanetmathPlanetmath is a radical ideal. If I is a radical ideal, the quotient ringMathworldPlanetmath R/I is a ring with no nonzero nilpotent elementsMathworldPlanetmath.

More generally, the radical of an ideal in can be defined over an arbitrary ring. Let I be an ideal of a ring R, the radical of I is the set of aR such that every m-system containing a has a non-empty intersectionMathworldPlanetmath with I:

I:={aRif S is an m-system, and aS, then SI}.

Under this definition, we see that I is again an ideal (two-sided) and it is a subset of {aRanI for some integer n>0}. Furthermore, if R is commutativePlanetmathPlanetmathPlanetmath, the two sets coincide. In other words, this definition of a radical of an ideal is indeed a “generalizationPlanetmathPlanetmath” of the radical of an ideal in a commutative ring.

Titleradical of an ideal
Canonical nameRadicalOfAnIdeal
Date of creation2013-03-22 12:35:54
Last modified on2013-03-22 12:35:54
OwnerCWoo (3771)
Last modified byCWoo (3771)
Numerical id17
AuthorCWoo (3771)
Entry typeDefinition
Classificationmsc 14A05
Classificationmsc 16N40
Classificationmsc 13-00
Related topicPrimeRadical
Related topicRadicalOfAnInteger
Related topicJacobsonRadical
Related topicHilbertsNullstellensatz
Related topicAlgebraicSetsAndPolynomialIdeals
Definesradical ideal
Definesradical
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 11:12:00