请输入您要查询的字词:

 

单词 RamanujansFormulaForPi
释义

Ramanujan’s formula for pi


Around 1910, Ramanujan proved the following formula:

Theorem.

The following series converges and the sum equals 1π:

1π=229801n=0(4n)!(1103+26390n)(n!)43964n.

Needless to say, the convergence is extremely fast. For example, if we only use the term n=0 we obtain the following approximation:

π9801211032=3.14159273001

and the error is (in absolute valueMathworldPlanetmathPlanetmathPlanetmath) equal to 0.0000000764235 In 1985, William Gosper used this formula to calculate the first 17 million digits of π.

Another similar formula can be easily obtained from the power seriesMathworldPlanetmath of arctanx. Although the convergence is good, it is not as impressive as in Ramanujan’s formula:

π=23n=0(-1)n(2n+1)3n.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 4:03:45