请输入您要查询的字词:

 

单词 RankOfAnEllipticCurve
释义

rank of an elliptic curve


Let K be a number fieldMathworldPlanetmath and let E be an elliptic curveMathworldPlanetmath overK. By E(K) we denote the set of points in E with coordinatesin K.

Theorem 1 (Mordell-Weil).

E(K) is a finitely generatedMathworldPlanetmath abeliangroupMathworldPlanetmath.

Proof.

The proof of this theorem is fairly involved. Themain two ingredients are the so called “weak Mordell-Weil theorem”(see below), the concept of height function for abelian groups andthe “descent” theorem.
See [2], Chapter VIII, page189.∎

Theorem 2 (Weak Mordell-Weil).

E(K)/mE(K) isfinite for all m2.

The Mordell-Weil theoremMathworldPlanetmath implies that for any elliptic curve E/Kthe group of points has the following structure:

E(K)Etorsion(K)R

where Etorsion(K) denotes the set of points of finite order (or torsion groupPlanetmathPlanetmath),and R is a non-negative integer which is called the rank of theelliptic curve. It is not known how big this number R can getfor elliptic curves over . The largest rank known foran elliptic curve over is 28 http://www.math.hr/ duje/tors/tors.htmlElkies (2006).

Note: see Mazur’s theorem for an account of the possible torsion subgroups over .

Examples:

  1. 1.

    The elliptic curve E1/:y2=x3+6 has rank 0and E1()0.

  2. 2.

    Let E2/:y2=x3+1, thenE2()/6. The torsion groupis generated by the point (2,3).

  3. 3.

    Let E3/:y2=x3+109858299531561, thenE3()/35. Seehttp://math.bu.edu/people/alozano/Torsion.htmlgeneratorsPlanetmathPlanetmathPlanetmathhere.

  4. 4.

    Let E4/:y2+1951/164xy-3222367/40344y=x3+3537/164x2-40302641/121032x, thenE4()10. Seehttp://math.bu.edu/people/alozano/Examples.htmlgeneratorshere.

References

  • 1 James Milne, Elliptic Curves, online course notes. http://www.jmilne.org/math/CourseNotes/math679.htmlhttp://www.jmilne.org/math/CourseNotes/math679.html
  • 2 Joseph H. Silverman, The Arithmetic of Elliptic Curves. Springer-Verlag, New York, 1986.
  • 3 Joseph H. Silverman, Advanced Topics inthe Arithmetic of Elliptic Curves. Springer-Verlag, New York,1994.
  • 4 Goro Shimura, Introduction to theArithmetic Theory of Automorphic Functions. Princeton UniversityPress, Princeton, New Jersey, 1971.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:00:44