请输入您要查询的字词:

 

单词 RegularElementOfALieAlgebra
释义

regular element of a Lie algebra


An element X𝔤 of a Lie algebraMathworldPlanetmath is called regularPlanetmathPlanetmathPlanetmath if the dimensionPlanetmathPlanetmathPlanetmath of its centralizerMathworldPlanetmathPlanetmath ζ𝔤(X)={Y𝔤[X,Y]=0} is minimal among all centralizers of elements in 𝔤.

Regular elements clearly exist and moreover they are Zariski dense in 𝔤. The function Xdimζ𝔤(X) is an upper semi-continuous function 𝔤0. Indeed, it is a constant minus rank(adX) and Xrank(adX) is lower semi-continuous. Thus the set of elements whose centralizer dimension is (greater than or) equal to that of any given regular element is Zariski open and non-empty.

If 𝔤 is reductive then the minimal centralizer dimension is equal to the rank of 𝔤.

More generally if V is a representation for a Lie algebra 𝔤,an element vV is called regular if the dimension of its stabilizerMathworldPlanetmath is minimal among all stabilizers of elements in V.

Examples

  1. 1.

    In 𝔰𝔩n a diagonal matrixMathworldPlanetmath X=diag(s1,,sn) is regular iff (si-sj)0 for all pairs 1i<jn. Any conjugatePlanetmathPlanetmath of such a matrix is also obviously regular.

  2. 2.

    In 𝔰𝔩n the nilpotent matrixMathworldPlanetmath

    (010001100)

    is regular. Moreover, it’s adjointPlanetmathPlanetmathPlanetmath orbit contains the set of all regular nilpotent elementsMathworldPlanetmath. The centralizer of this matrix is the full subalgebra oftrace zero, diagonal matricies.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:06:23