Taylor expansion of 1+xThe Taylor series for f(x)=1+x using theT(x)=∑k=0∞f(k)(a)k!(x-a)kis given in the table below for the first few .kexpansionsimplifiedat a=00f(a)(1+a)1/211f′(a)(x-a)12(1+a)-1/2(x-a)12x2f(2)(a)2!(x-a)2-18(1+a)-3/2(x-a)2-18x23f(3)(a)3!(x-a)3348(1+a)-5/2(x-a)3116x34f(4)(a)4!(x-a)4-15384(1+a)-7/2(x-a)4-5128x45f(5)(a)5!(x-a)51053840(1+a)-9/2(x-a)57256x56f(6)(a)6!(x-a)6-94546080(1+a)-11/2(x-a)6-211024x6Table 1: Taylor Series for f(x)=1+xThe general coefficient of the expansion, for n≥2is:f(n)(a)n!=(12n)(1+a)12-n=12(-12)(-32)⋯(12-(n-1))n(n-1)(n-2)⋯1 (1+a)-2n-12=12(-12)n-1 1⋅3⋯(2n-3)n(n-1)(n-2)⋯1 (1+a)-2n-12=(-1)n-12nn!(2n-3)!(2n-4)(2n-6)⋯2 (1+a)-2n-12=(-1)n-1(2n-3)!22n-2n!(n-2)! (1+a)-2n-12.