请输入您要查询的字词:

 

单词 RiemannCurvatureTensor
释义

Riemann curvature tensor


Let𝒳 denote the vector spaceMathworldPlanetmath of smooth vector fields on asmooth Riemannian manifold (M,g). Note that 𝒳 is actually a𝒞(M) module because we can multiply a vector fieldby a function to obtain another vector field.The Riemann curvature tensorMathworldPlanetmath is the tri-linear𝒞 mapping

R:𝒳×𝒳×𝒳𝒳,

which is defined by

R(X,Y)Z=XYZ-YXZ-[X,Y]Z

where X,Y,Z𝒳 are vector fields, where isthe Levi-Civita connectionMathworldPlanetmath attached to the metric tensor g, andwhere the square brackets denote the Lie bracket of two vector fields.The tri-linearity means that for every smooth f:Mwe have

fR(X,Y)Z=R(fX,Y)Z=R(X,fY)Z=R(X,Y)fZ.

In componentsPlanetmathPlanetmathPlanetmath this tensor is classically denoted by a set offour-indexed components Rijkl. This means that given abasis of linearly independentMathworldPlanetmath vector fields Xi we have

R(Xj,Xk)Xl=sRsjklXs.

In a two dimensional manifold it is known that the Gaussian curvatureMathworldPlanetmathit is given by

Kg=R1212g11g22-g122
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 21:36:14